Caputo fractional evolution equations in discrete sequences spaces
Resumen: In this paper, we treat some fractional differential equations on the sequence Lebesgue spaces ℓp(N0) with p≥1. The Caputo fractional calculus extends the usual derivation. The operator, associated to the Cauchy problem, is defined by a convolution with a sequence of compact support and belongs to the Banach algebra ℓ1(Z). We treat in detail some of these compact support sequences. We use techniques from Banach algebras and a Functional Analysis to explicity check the solution of the problem.
Idioma: Inglés
DOI: 10.3390/foundations2040059
Año: 2022
Publicado en: Foundations 2, 4 (2022), 872-884
ISSN: 2673-9321

Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2023-01-11-10:11:12)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2022-11-24, modifiée le 2023-01-11


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)