Caputo fractional evolution equations in discrete sequences spaces
Resumen: In this paper, we treat some fractional differential equations on the sequence Lebesgue spaces ℓp(N0) with p≥1. The Caputo fractional calculus extends the usual derivation. The operator, associated to the Cauchy problem, is defined by a convolution with a sequence of compact support and belongs to the Banach algebra ℓ1(Z). We treat in detail some of these compact support sequences. We use techniques from Banach algebras and a Functional Analysis to explicity check the solution of the problem.
Idioma: Inglés
DOI: 10.3390/foundations2040059
Año: 2022
Publicado en: Foundations 2, 4 (2022), 872-884
ISSN: 2673-9321

Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-01-11-10:11:12)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-11-24, last modified 2023-01-11


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)