Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases

Mainar, E. (Universidad de Zaragoza) ; Peña, J. M. (Universidad de Zaragoza) ; Rubio, B. (Universidad de Zaragoza)
Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases
Resumen: In this paper we deduce a bidiagonal decomposition of Gram and Wronskian matrices of geometric and Poisson bases. It is also proved that the Gram matrices of both bases are strictly totally positive, that is, all their minors are positive. The mentioned bidiagonal decompositions are used to achieve algebraic computations with high relative accuracy for Gram and Wronskian matrices of these bases. The provided numerical experiments illustrate the accuracy when computing the inverse matrix, the eigenvalues or singular values or the solutions of some linear systems, using the theoretical results.
Idioma: Inglés
DOI: 10.1007/s13398-022-01253-1
Año: 2022
Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 116 (2022), 126 [22 pp.]
ISSN: 1578-7303

Factor impacto JCR: 2.9 (2022)
Categ. JCR: MATHEMATICS rank: 15 / 329 = 0.046 (2022) - Q1 - T1
Factor impacto CITESCORE: 4.9 - Mathematics (Q1)

Factor impacto SCIMAGO: 0.933 - Algebra and Number Theory (Q1) - Analysis (Q1) - Geometry and Topology (Q1) - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-14:37:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2022-11-24, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)