Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases

Mainar, E. (Universidad de Zaragoza) ; Peña, J. M. (Universidad de Zaragoza) ; Rubio, B. (Universidad de Zaragoza)
Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases
Resumen: In this paper we deduce a bidiagonal decomposition of Gram and Wronskian matrices of geometric and Poisson bases. It is also proved that the Gram matrices of both bases are strictly totally positive, that is, all their minors are positive. The mentioned bidiagonal decompositions are used to achieve algebraic computations with high relative accuracy for Gram and Wronskian matrices of these bases. The provided numerical experiments illustrate the accuracy when computing the inverse matrix, the eigenvalues or singular values or the solutions of some linear systems, using the theoretical results.
Idioma: Inglés
DOI: 10.1007/s13398-022-01253-1
Año: 2022
Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 116 (2022), 126 [22 pp.]
ISSN: 1578-7303

Factor impacto JCR: 2.9 (2022)
Categ. JCR: MATHEMATICS rank: 15 / 329 = 0.046 (2022) - Q1 - T1
Factor impacto CITESCORE: 4.9 - Mathematics (Q1)

Factor impacto SCIMAGO: 0.933 - Algebra and Number Theory (Q1) - Analysis (Q1) - Geometry and Topology (Q1) - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2024-03-18-14:37:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2022-11-24, modifiée le 2024-03-19


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)