Discrete Hölder spaces and their characterization via semigroups associated with the discrete Laplacian and kernel estimates
Resumen: In this paper, we characterize the discrete Hölder spaces by means of the heat and Poisson semigroups associated with the discrete Laplacian. These characterizations allow us to get regularity properties of fractional powers of the discrete Laplacian and the Bessel potentials along these spaces and also in the discrete Zygmund spaces in a more direct way than using the pointwise definition of the spaces. To obtain our results, it has been crucial to get boundedness properties of the heat and Poisson kernels and their derivatives in both space and time variables. We believe that these estimates are also of independent interest.
Idioma: Inglés
DOI: 10.1007/s00028-022-00851-1
Año: 2022
Publicado en: JOURNAL OF EVOLUTION EQUATIONS 22, 4 (2022), 91 [42 pp.]
ISSN: 1424-3199

Factor impacto JCR: 1.4 (2022)
Categ. JCR: MATHEMATICS rank: 71 / 329 = 0.216 (2022) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 121 / 267 = 0.453 (2022) - Q2 - T2

Factor impacto CITESCORE: 1.9 - Mathematics (Q2)

Factor impacto SCIMAGO: 1.19 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E26-17R
Financiación: info:eu-repo/grantAgreement/ES/MCYTS-DGI-FEDER/PID2019-105979GB-I00
Financiación: info:eu-repo/grantAgreement/ES/UZ/JIUZ-2019-CIE-01
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-14:57:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-12-22, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)