U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan
Resumen: Strong thermal stress caused by high temperature and difference of thermal expansion coefficient (CTE) will negatively influence the lifespan of the thermoelectric module. In this work, a new high-temperature CaMnO3-based U-type unileg thermoelectric module, combining a unileg structure with pn-junction, is proposed and investigated. The novel design avoids the device failure due to different CTEs and high temperature gradients. As a result, the maximal thermal stress (σmax,TEM) of 3.31 GPa and fatigue life of 41686 cycles are 46 % and 132 % of those of traditional modules at 6 W and 300 K, respectively. To further relieve stress concentration, the effect of rounded corners (ru, rl), Ag layer thickness (HAg) and length of right legs (LR), have been studied. It has been found that larger ru, and rl are suitable to relieve the local stress concentration, and the lowest σmax,TEM and highest power (Pmax) are achieved at (ru,rl)=(0.1,0) and (0,0.5). Moreover, larger LR and HA are beneficial for mechanical properties by decreasing the peak stress and dispersing the high thermal stress regions, while module performance is improved at lower LR and HAg. Results obtained from this U-type unileg thermoelectric module should influence and guide the design and optimization of high-temperature thermoelectric generators.
Idioma: Inglés
DOI: 10.1016/j.energy.2021.121771
Año: 2022
Publicado en: Energy 238, Parte B (2022), 121771 [15 pp.]
ISSN: 0360-5442

Factor impacto JCR: 8.9 (2022)
Categ. JCR: THERMODYNAMICS rank: 3 / 63 = 0.048 (2022) - Q1 - T1
Categ. JCR: ENERGY & FUELS rank: 23 / 119 = 0.193 (2022) - Q1 - T1

Factor impacto CITESCORE: 14.9 - Engineering (Q1) - Energy (Q1) - Environmental Science (Q1)

Factor impacto SCIMAGO: 1.989 - Building and Construction (Q1) - Civil and Structural Engineering (Q1) - Electrical and Electronic Engineering (Q1) - Energy (miscellaneous) (Q1) - Energy Engineering and Power Technology (Q1) - Renewable Energy, Sustainability and the Environment (Q1) - Industrial and Manufacturing Engineering (Q1) - Management, Monitoring, Policy and Law (Q1) - Mechanical Engineering (Q1) - Modeling and Simulation (Q1) - Pollution (Q1) - Fuel Technology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T54-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82183-C3-1-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-03-18-15:33:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2023-01-26, last modified 2024-03-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)