CFD Modeling and Validation of Blast Furnace Gas/Natural Gas Mixture Combustion in an Experimental Industrial Furnace
Financiación H2020 / H2020 Funds
Resumen: The use of residual gases from steel production processes as fuel for steel treatment furnaces has attracted great interest as a method for reducing fossil fuel consumption and the steel footprint. However, these gases often have a low calorific value, and a direct substitution can lead to low temperatures or combustion instability issues. CFD simulations of the combustion of these gases can help steel producers forecast the results of the substitution before real testing and implementation. In this study, a CFD model of an industrial experimental furnace in the steel sector is developed and validated. The results are calculated using the combustion, radiation, and heat transfer models included in the software Ansys Fluent. The validation of the simulated results is performed with data acquired from experimental tests under the same simulated conditions at three air-to-fuel equivalence ratios, which vary from an excess of 0% to an excess of 5% oxygen at the outlet. The model is adjusted to the results, capturing the trends of the measured physical variables and pollutant concentrations. In the case of the combustion temperature, the differences between the simulated and measured values vary from 0.03% to 6.9. Based on the simulation results, the use of blast furnace gas as fuel produces temperatures inside the chamber between 1004 °C and 1075 °C and high stream velocities because of the high flow needed to keep the power constant. Flames exhibit straight movements since the high flows absorb the effect of the swirling flames. The addition of natural gases increases the combustion temperature up to 1211 °C and reduces the flow and length of the flames. Finally, temperatures up to 1298 °C and shorter flames are reached with natural gas enriched with a stream of oxygen, but in this case, NOx emissions need to be controlled.
Idioma: Inglés
DOI: 10.3390/pr11020332
Año: 2023
Publicado en: PROCESSES 11, 2 (2023), 332 [24 pp.]
ISSN: 2227-9717

Factor impacto JCR: 2.8 (2023)
Categ. JCR: ENGINEERING, CHEMICAL rank: 80 / 170 = 0.471 (2023) - Q2 - T2
Factor impacto CITESCORE: 5.1 - Chemical Engineering (miscellaneous) (Q2) - Bioengineering (Q3) - Process Chemistry and Technology (Q3)

Factor impacto SCIMAGO: 0.525 - Chemical Engineering (miscellaneous) (Q2) - Process Chemistry and Technology (Q3) - Bioengineering (Q3)

Financiación: info:eu-repo/grantAgreement/EC/H2020/820771/EU/ Boosting new Approaches for flexibility Management By Optimizing process Off-gas and waste use/BAMBOO
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-11:58:34)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-02-10, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)