New recurrence relations for several classical families of polynomials
Resumen: In this paper, we derive new recurrence relations for the following families of polynomials: Nørlund polynomials, generalized Bernoulli polynomials, generalized Euler polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, generalized Bessel polynomials and generalized Apostol–Euler polynomials. The recurrence relations are derived from a differential equation of first order and a Cauchy integral representation obtained from the generating function of these polynomials.
Idioma: Inglés
DOI: 10.1080/10236198.2021.1999432
Año: 2021
Publicado en: JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 27, 10 (2021), 1512-1523
ISSN: 1023-6198

Factor impacto JCR: 1.352 (2021)
Categ. JCR: MATHEMATICS, APPLIED rank: 136 / 267 = 0.509 (2021) - Q3 - T2
Factor impacto CITESCORE: 2.2 - Mathematics (Q2)

Factor impacto SCIMAGO: 0.46 - Analysis (Q3) - Algebra and Number Theory (Q3)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2017-83490-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2023-05-18-15:42:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2023-02-24, last modified 2023-05-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)