Magnetic nanofibers for remotely triggered catalytic activity applied to the degradation of organic pollutants

Fuentes-García, J.A. (Universidad de Zaragoza) ; Sanz, B. ; Mallada, R. (Universidad de Zaragoza) ; Ibarra, M.R. (Universidad de Zaragoza) ; Goya, G.F. (Universidad de Zaragoza)
Magnetic nanofibers for remotely triggered catalytic activity applied to the degradation of organic pollutants
Financiación H2020 / H2020 Funds
Resumen: This work reports on the fabrication and characterization of a novel type of electrospun magnetic nanofibers (MNFs), and their application as a magnetically-activable catalysts for degradation of organic pollutants. The magnetic stimulation capability for the catalytic action is provided by iron-manganese oxide (MnxFe2-xO4) magnetic nanoparticles (MNPs) embedded into electrospun polyacrylonitrile (PAN), which provides stability and chemical resistance. The MNPs (average size d = 40 ± 7 nm) were first obtained by a green and fast sonochemical route, and subsequently embedded into electrospun PAN nanofibers. The final MNFs showed an average diameter of 760 ± 150 nm, providing a superhydrophobic surface with contact angle (θc = 165°), as well as a considerable amount ( 50 % wt.) of embedded MNPs (Mn0.5Fe2.5O4), thermally stable up to temperatures of 330 °C. The catalytic Fe2+/3+/Mn2+/3+/4+ active centers on the MNPs of MNF’s surface could be remotely activated by alternating magnetic fields (AMF) to degrade the methyl blue (MB). Remarkable stability of the MNFs during heating under extreme pH conditions (3 < pH < 10) was observed along several catalytic cycles. The degradation kinetics in presence of hydrogen peroxide showed followed the Langmuir–Hinshelwood model with an average efficiency > 80 %, after several cycles of reusing the same sample without any regeneration process. The capacity of these materials as a catalytic material with magnetic remote activation makes them appealing for those catalytic applications under conditions of darkness or restrained access, where photocatalytic reaction cannot be achieved.
Idioma: Inglés
DOI: 10.1016/j.matdes.2023.111615
Año: 2023
Publicado en: MATERIALS & DESIGN 226 (2023), 111615 [9 pp.]
ISSN: 0264-1275

Financiación: info:eu-repo/grantAgreement/EC/H2020/101007629 /EU/Nanomaterials for Enzymatic Control of Oxidative Stress Toxicity and Free Radical Generation/NESTOR
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PDC2021-121409-I00
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2019-106947RB-C21
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-03-23-13:01:18)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-03-13, última modificación el 2023-03-23


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)