Lipschitz-free spaces, ultraproducts, and finite representability of metric spaces
Resumen: We study several properties and applications of the ultrapower of a metric space M. We prove that the Lipschitz-free space is finitely representable in . We also characterize the metric spaces that are finitely Lipschitz representable in a Banach space as those that biLipschitz embed into an ultrapower of the Banach space. Thanks to this link, we obtain that if M is finitely Lipschitz representable in a Banach space X, then is finitely representable in . We apply these results to the study of cotype in Lipschitz-free spaces and the stability of Lipschitz-free spaces and spaces of Lipschitz functions under ultraproducts.
Idioma: Inglés
DOI: 10.1016/j.jmaa.2023.127253
Año: 2023
Publicado en: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 526, 2 (2023), 127253 [14 pp.]
ISSN: 0022-247X

Factor impacto JCR: 1.2 (2023)
Categ. JCR: MATHEMATICS rank: 80 / 490 = 0.163 (2023) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 140 / 332 = 0.422 (2023) - Q2 - T2

Factor impacto CITESCORE: 2.5 - Analysis (Q2) - Applied Mathematics (Q2)

Factor impacto SCIMAGO: 0.816 - Analysis (Q1) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI-FEDER/ MTM2017-83262-C2-2-P
Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C32
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-12:06:58)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2023-05-25, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)