Infinite limit of a function at infinity and its phenomenology
Resumen: In this paper we aim to characterise and define the phenomena of the infinite limit of a function at infinity. Based on the intuitive and formal approaches, we obtain as results five phenomena organised by a definition of this limit: intuitive unlimited growth of a function, for plus and minus infinity, and intuitive unlimited decrease of a function, for plus and minus infinity
(intuitive approach), and the one way and returned phenomenon of infinite limit functions (formal approach). All this is intended to help overcome the difficulties that pre-university students have with the concept of limit, contributing from phenomenology, Advanced and Elementary Mathematical Thinking, and APOS theory.

Idioma: Inglés
DOI: 10.24917/20809751.14.3
Año: 2022
Publicado en: Annales Universitates Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia 14 (2022), 25-41
ISSN: 2080-9751

Factor impacto CITESCORE: 0.4 - Mathematics (Q4) - Social Sciences (Q4)

Factor impacto SCIMAGO: 0.102 - Mathematics (miscellaneous) (Q4) - Education (Q4)

Financiación: info:eu-repo/grantAgreement/ES/DGA/S60-23R
Tipo y forma: Article (Published version)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.


Exportado de SIDERAL (2023-09-13-15:34:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Didáctica de la Matemática



 Record created 2023-07-12, last modified 2023-09-14


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)