Dynamical and topological conditions triggering the spontaneous activation of Izhikevich neuronal networks
Resumen: Understanding the dynamic behavior of neuronal networks in silico is crucial for tackling the analysis of their biological counterparts and making accurate predictions. Of particular importance is determining the structural and dynamical conditions necessary for a neuronal network to activate spontaneously, transitioning from a quiescent ensemble of neurons to a network-wide coherent burst. Drawing from the versatility of the Master Stability Function, we have applied this formalism to a system of coupled neurons described by the Izhikevich model to derive the required conditions for activation. These conditions are expressed as a critical effective coupling
, grounded in both topology and dynamics, above which the neuronal network will activate. For regular spiking neurons, average connectivity and noise play a significant role in their ability to activate. We have tested these conditions against numerical simulations of in silico networks, including both synthetic topologies and a biologically-realistic spatial network, showing that the theoretical conditions are well satisfied. Our findings indicate that neuronal networks readily meet the criteria for spontaneous activation, and that this capacity is weakly dependent on the microscopic details of the network as long as average connectivity and noise are sufficiently strong.

Idioma: Inglés
DOI: 10.1016/j.chaos.2023.113547
Año: 2023
Publicado en: Chaos, Solitons and Fractals 172 (2023), 113547 [7 pp.]
ISSN: 0960-0779

Factor impacto JCR: 5.3 (2023)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 2 / 60 = 0.033 (2023) - Q1 - T1
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 7 / 135 = 0.052 (2023) - Q1 - T1
Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 18 / 112 = 0.161 (2023) - Q1 - T1

Factor impacto CITESCORE: 13.2 - Physics and Astronomy (all) (Q1) - Mathematical Physics (Q1) - Statistical and Nonlinear Physics (Q1) - Applied Mathematics (Q1)

Factor impacto SCIMAGO: 1.349 - Applied Mathematics (Q1) - Mathematical Physics (Q1) - Statistical and Nonlinear Physics (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E36-23R-FENOL
Financiación: info:eu-repo/grantAgreement/ES/MCINN/FEDER/PID2019--108842GB-C21
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-113582GB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-06-19-08:41:30)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física de la Materia Condensada



 Registro creado el 2023-07-28, última modificación el 2025-06-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)