DREAM-dependent activation of astrocytes in amyotrophic lateral sclerosis

Larrodé, Pilar (Universidad de Zaragoza) ; Calvo, Ana Cristina (Universidad de Zaragoza) ; Moreno-Martínez, Laura (Universidad de Zaragoza) ; De la Torre, Miriam (Universidad de Zaragoza) ; Moreno-García, Leticia ; Molina, Nora ; Castiella, Tomás (Universidad de Zaragoza) ; Iñiguez, Cristina (Universidad de Zaragoza) ; Pascual, Luis Fernando (Universidad de Zaragoza) ; Miana Mena, Francisco Javier (Universidad de Zaragoza) ; Zaragoza, Pilar (Universidad de Zaragoza) ; Ramón y Cajal, Santiago ; Osta, Rosario (Universidad de Zaragoza)
DREAM-dependent activation of astrocytes in amyotrophic lateral sclerosis
Resumen: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.
Idioma: Inglés
DOI: 10.1007/s12035-017-0713-1
Año: 2017
Publicado en: MOLECULAR NEUROBIOLOGY 55, 1 (2017), 1-12
ISSN: 0893-7648

Factor impacto JCR: 5.076 (2017)
Categ. JCR: NEUROSCIENCES rank: 44 / 261 = 0.169 (2017) - Q1 - T1
Factor impacto SCIMAGO: 1.614 - Neurology (Q1) - Neuroscience (miscellaneous) (Q1) - Cellular and Molecular Neuroscience (Q2)

Financiación: info:eu-repo/grantAgreement/ES/FIS/PI14-00947
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Genética (Dpto. Anatom.,Embri.Genét.Ani.)
Área (Departamento): Área Fisiología (Dpto. Farmacología y Fisiolog.)
Área (Departamento): Area Medicina (Dpto. Medicina, Psiqu. y Derm.)
Área (Departamento): Area Anatomía Patológica (Dpto. Anat.Pat.Med.Leg.For.To.)


Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-01-04-10:59:46)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Anatomía Patológica
Articles > Artículos por área > Fisiología
Articles > Artículos por área > Genética
Articles > Artículos por área > Medicina



 Record created 2023-12-15, last modified 2024-01-04


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)