Predictive Methodology for Quality Assessment in Injection Molding Comparing Linear Regression and Neural Networks
Resumen: The use of recycled polypropylene in industry to reduce environmental impact is increasing. Design for manufacturing and process simulation is a key stage in the development of plastic parts. Traditionally, a trial-and-error methodology is followed to eliminate uncertainties regarding geometry and process. A new proposal is presented, combining simulation with the design of experiments and creating prediction models for seven different process and part quality output features. These models are used to optimize the design without developing additional time-consuming simulations. The study aims to compare the precision and correlation of these models. The methods used are linear regression and artificial neural network (ANN) fitting. A wide range of eight injection parameters and geometry variations are used as inputs. The predictability of nonlinear behavior and compensatory effects due to the complex relationships between this wide set of parameter combinations is analyzed further in the state of the art. Results show that only Back Propagation Neural Networks (BPNN) are suitable for correlating all quality features in a single formula. The use of prediction models accelerates the optimization of part design, applying multiple criteria to support decision-making. The methodology is applied to the design of a plastic support for induction hobs. Furthermore, this methodology has demonstrated that a weight reduction of 27% is feasible. However, it is necessary to combine process parameters that differ from the standard ones with a non-uniform thickness distribution so that the remaining injection parameters, material properties, and dimensions fall within tolerances.
Idioma: Inglés
DOI: 10.3390/polym15193915
Año: 2023
Publicado en: Polymers 15, 19 (2023), 3915 [20 pp.]
ISSN: 2073-4360

Factor impacto JCR: 4.7 (2023)
Categ. JCR: POLYMER SCIENCE rank: 18 / 94 = 0.191 (2023) - Q1 - T1
Factor impacto CITESCORE: 8.0 - Polymers and Plastics (Q1) - Chemistry (all) (Q1)

Factor impacto SCIMAGO: 0.8 - Polymers and Plastics (Q1) - Chemistry (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T08-23R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Mecánica (Dpto. Ingeniería Mecánica)
Área (Departamento): Área Expresión Gráfica en Ing. (Dpto. Ingeniería Diseño Fabri.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-31-09:54:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-12-15, última modificación el 2024-07-31


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)