Brunn-Minkowski inequality for theta-convolution bodies via Ball's bodies
Resumen: We consider the problem of finding the best function ϕn : [0, 1] → R such that for any pair of convex bodies K, L ∈ Rn the following Brunn–Minkowski type inequality holds |K +θ L| 1n ≥ ϕn(θ )(|K| 1 n + |L| 1 n ), where K +θ L is the θ-convolution body of K and L. We prove a sharp inclusion of the family of Ball’s bodies of an α-concave function in its super-level sets in order to provide the best possible function in the range 3 4 n ≤ θ ≤ 1, characterizing the
equality cases.

Idioma: Inglés
DOI: 10.1007/s12220-023-01508-2
Año: 2024
Publicado en: JOURNAL OF GEOMETRIC ANALYSIS 34, 58 (2024), 1-15
ISSN: 1050-6926

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-01-09-13:10:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-01-09, last modified 2024-01-09


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)