Resumen: We consider the problem of finding the best function ϕn : [0, 1] → R such that for any pair of convex bodies K, L ∈ Rn the following Brunn–Minkowski type inequality holds |K +θ L| 1n ≥ ϕn(θ )(|K| 1 n + |L| 1 n ), where K +θ L is the θ-convolution body of K and L. We prove a sharp inclusion of the family of Ball’s bodies of an α-concave function in its super-level sets in order to provide the best possible function in the range 3 4 n ≤ θ ≤ 1, characterizing the
equality cases. Idioma: Inglés DOI: 10.1007/s12220-023-01508-2 Año: 2024 Publicado en: JOURNAL OF GEOMETRIC ANALYSIS 34, 58 (2024), 1-15 ISSN: 1050-6926 Factor impacto JCR: 1.5 (2024) Categ. JCR: MATHEMATICS rank: 60 / 483 = 0.124 (2024) - Q1 - T1 Factor impacto SCIMAGO: 1.248 - Geometry and Topology (Q1)