A review of the current state of magnetic force microscopy to unravel the magnetic properties of nanomaterials applied in biological systems and future directions for quantum technologies
Resumen: Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM’s main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Idioma: Inglés
DOI: 10.3390/nano13182585
Año: 2023
Publicado en: Nanomaterials 13, 18 (2023), 2585 [42 pp.]
ISSN: 2079-4991

Factor impacto JCR: 4.4 (2023)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 146 / 439 = 0.333 (2023) - Q2 - T2
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 62 / 141 = 0.44 (2023) - Q2 - T2
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 70 / 231 = 0.303 (2023) - Q2 - T1
Categ. JCR: PHYSICS, APPLIED rank: 47 / 179 = 0.263 (2023) - Q2 - T1

Factor impacto CITESCORE: 8.5 - Chemical Engineering (all) (Q1) - Materials Science (all) (Q1)

Factor impacto SCIMAGO: 0.798 - Chemical Engineering (miscellaneous) (Q1) - Materials Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131064B-I00
Financiación: info:eu-repo/grantAgreement/ES/CSIC/QTP-2103003
Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E12-23R-RASMIA
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2021-124734OB-C21
Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-12:00:37)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-01-22, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)