Resumen: Any Lipschitz map f:M→N between metric spaces can be “linearised” in such a way that it becomes a bounded linear operator fˆ:F(M)→F(N) between the Lipschitz-free spaces over M and N. The purpose of this note is to explore the connections between the injectivity of f and the injectivity of fˆ. While it is obvious that if fˆ is injective then so is f, the converse is less clear. Indeed, we pin down some cases where this implication does not hold but we also prove that, for some classes of metric spaces M, any injective Lipschitz map f:M→N (for any N) admits an injective linearisation. Along our way, we study how Lipschitz maps carry the support of elements in free spaces and also we provide stronger conditions on f which ensure that fˆ is injective. Idioma: Inglés DOI: 10.1007/s40840-023-01467-5 Año: 2023 Publicado en: Bulletin of the Malaysian Mathematical Sciences Society 46, 2 (2023), [31 pp.] ISSN: 0126-6705 Factor impacto JCR: 1.0 (2023) Categ. JCR: MATHEMATICS rank: 117 / 490 = 0.239 (2023) - Q1 - T1 Factor impacto CITESCORE: 2.4 - Mathematics (all) (Q1)