Injectivity of Lipschitz Operators
Resumen: Any Lipschitz map f:M→N between metric spaces can be “linearised” in such a way that it becomes a bounded linear operator fˆ:F(M)→F(N) between the Lipschitz-free spaces over M and N. The purpose of this note is to explore the connections between the injectivity of f and the injectivity of fˆ. While it is obvious that if fˆ is injective then so is f, the converse is less clear. Indeed, we pin down some cases where this implication does not hold but we also prove that, for some classes of metric spaces M, any injective Lipschitz map f:M→N (for any N) admits an injective linearisation. Along our way, we study how Lipschitz maps carry the support of elements in free spaces and also we provide stronger conditions on f which ensure that fˆ is injective.
Idioma: Inglés
DOI: 10.1007/s40840-023-01467-5
Año: 2023
Publicado en: Bulletin of the Malaysian Mathematical Sciences Society 46, 2 (2023), [31 pp.]
ISSN: 0126-6705

Factor impacto JCR: 1.0 (2023)
Categ. JCR: MATHEMATICS rank: 117 / 490 = 0.239 (2023) - Q1 - T1
Factor impacto CITESCORE: 2.4 - Mathematics (all) (Q1)

Factor impacto SCIMAGO: 0.508 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI-FEDER/ MTM2017-83262-C2-2-P
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122126NB-C32
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2024-11-22-12:02:48)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2024-01-23, modifiée le 2024-11-25


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)