A subordination principle on wright functions and regularized resolvent families
Resumen: We obtain a vector-valued subordination principle for -regularized resolvent families which unified and improves various previous results in the literature. As a consequence, we establish new relations between solutions of different fractional Cauchy problems. To do that, we consider scaled Wright functions which are related to Mittag-Leffler functions, the fractional calculus, and stable Lévy processes. We study some interesting properties of these functions such as subordination (in the sense of Bochner), convolution properties, and their Laplace transforms. Finally we present some examples where we apply these results.
Idioma: Inglés
DOI: 10.1155/2015/158145
Año: 2015
Publicado en: Journal of Function Spaces 2015 (2015), [9 pp.]
ISSN: 2314-8896

Factor impacto JCR: 0.426 (2015)
Categ. JCR: MATHEMATICS, APPLIED rank: 227 / 254 = 0.894 (2015) - Q4 - T3
Categ. JCR: MATHEMATICS rank: 248 / 311 = 0.797 (2015) - Q4 - T3

Factor impacto SCIMAGO: 0.485 - Analysis (Q3)

Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2024-01-31-19:17:30)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-01-31, modifiée le 2024-01-31


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)