Parameter-uniform numerical methods for singularly perturbed parabolic problems with incompatible boundary-initial data
Resumen: Numerical approximations to the solution of a linear singularly perturbed parabolic reaction-diffusion problem with incompatible boundary-initial data are generated. The method involves combining the computational solution of a classical finite difference operator on a tensor product of two piecewise-uniform Shishkin meshes with an analytical function that captures the local nature of the incompatibility. A proof is given to show almost first order parameter-uniform convergence of these numerical/analytical approximations. Numerical results are given to illustrate the theoretical error bounds.
Idioma: Inglés
DOI: 10.1016/j.apnum.2019.08.005
Año: 2019
Publicado en: APPLIED NUMERICAL MATHEMATICS 146 (2019), 436-451
ISSN: 0168-9274

Factor impacto JCR: 1.979 (2019)
Categ. JCR: MATHEMATICS, APPLIED rank: 46 / 260 = 0.177 (2019) - Q1 - T1
Factor impacto SCIMAGO: 1.017 - Applied Mathematics (Q1) - Computational Mathematics (Q1) - Numerical Analysis (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R
Financiación: info:eu-repo/grantAgreement/ES/MCYT-FEDER/MTM2016-75139-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2024-02-01-14:52:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-01-31, modifiée le 2024-02-01


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)