Hilbertian Hardy-Sobolev spaces on a half-plane
Resumen: In this paper we deal with a scale of reproducing kernel Hilbert spaces H2 (n), n=0, which are linear subspaces of the classical Hilbertian Hardy space on the right-hand half-plane C+. They are obtained as ranges of the Laplace transform in extended versions of the Paley-Wiener theorem which involve absolutely continuous functions of higher degree. An explicit integral formula is given for the reproducing kernel Kz, n of H2 (n), from which we can find the estimate ¿Kz, n¿~|z|-1/2 for z¿C+. Then composition operators Cf:H2 (n)¿H2 (n), Cff=f°f, on these spaces are discussed, giving some necessary and some sufficient conditions for analytic maps f:C+¿C+ to induce bounded composition operators.
Idioma: Inglés
DOI: 10.1016/j.jmaa.2020.124131
Año: 2020
Publicado en: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 489, 1 (2020), 124131 1-25
ISSN: 0022-247X

Factor impacto JCR: 1.583 (2020)
Categ. JCR: MATHEMATICS rank: 63 / 330 = 0.191 (2020) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 109 / 265 = 0.411 (2020) - Q2 - T2

Factor impacto SCIMAGO: 0.95 - Applied Mathematics (Q1) - Analysis (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E26-17R
Financiación: info:eu-repo/grantAgreement/ES/MCYTS-MTM2016-77710-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-01-31-19:21:12)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-01-31, last modified 2024-01-31


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)