A singularly perturbed convection-diffusion parabolic problem with incompatible boundary/initial data
Resumen: A singularly perturbed parabolic problem of convection-diffusion type with incompatible inflow boundary and initial conditions is examined. In the case of constant coefficients, a set of singular functions are identified which match certain incompatibilities in the data and also satisfy the associated homogeneous differential equation. When the convective coefficient only depends on the time variable and the initial/boundary data is discontinuous, then a mixed analytical/numerical approach is taken. In the case of variable coefficients and the zero level of compatibility being satisfied (i.e. continuous boundary/initial data), a numerical method is constructed whose order of convergence is shown to depend on the next level of compatibility being satisfied by the data. Numerical results are presented to support the theoretical error bounds established for both of the approaches examined in the paper.
Idioma: Inglés
DOI: 10.1016/j.apnum.2023.04.011
Año: 2023
Publicado en: APPLIED NUMERICAL MATHEMATICS 190 (2023), 168-186
ISSN: 0168-9274

Factor impacto JCR: 2.2 (2023)
Categ. JCR: MATHEMATICS, APPLIED rank: 46 / 332 = 0.139 (2023) - Q1 - T1
Factor impacto CITESCORE: 5.6 - Applied Mathematics (Q1) - Computational Mathematics (Q1) - Numerical Analysis (Q1)

Factor impacto SCIMAGO: 1.006 - Applied Mathematics (Q1) - Numerical Analysis (Q1) - Computational Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R
Financiación: info:eu-repo/grantAgreement/ES/MICINN PID2019-105979GB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2024-11-22-12:02:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2024-01-31, modifiée le 2024-11-25


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)