Resumen: A bidiagonal decomposition of quantum Hilbert matrices is obtained and the total positivity of these matrices is proved. This factorization is used to get accurate algebraic computations with these matrices. The numerical errors due to imprecise computer arithmetic or perturbed input data in the computation of the factorization are analyzed. Numerical experiments show the accuracy of the proposed methods. Idioma: Inglés DOI: 10.1016/j.laa.2023.10.026 Año: 2023 Publicado en: LINEAR ALGEBRA AND ITS APPLICATIONS 681 (2023), 131-149 ISSN: 0024-3795 Factor impacto JCR: 1.0 (2023) Categ. JCR: MATHEMATICS rank: 117 / 490 = 0.239 (2023) - Q1 - T1 Categ. JCR: MATHEMATICS, APPLIED rank: 181 / 332 = 0.545 (2023) - Q3 - T2 Factor impacto CITESCORE: 2.2 - Algebra and Number Theory (Q1) - Geometry and Topology (Q1) - Discrete Mathematics and Combinatorics (Q2) - Numerical Analysis (Q2)