Accurate bidiagonal factorization of quantum Hilbert matrices

Mainar, E. (Universidad de Zaragoza) ; Peña, J.M. (Universidad de Zaragoza) ; Rubio, B. (Universidad de Zaragoza)
Accurate bidiagonal factorization of quantum Hilbert matrices
Resumen: A bidiagonal decomposition of quantum Hilbert matrices is obtained and the total positivity of these matrices is proved. This factorization is used to get accurate algebraic computations with these matrices. The numerical errors due to imprecise computer arithmetic or perturbed input data in the computation of the factorization are analyzed. Numerical experiments show the accuracy of the proposed methods.
Idioma: Inglés
DOI: 10.1016/j.laa.2023.10.026
Año: 2023
Publicado en: LINEAR ALGEBRA AND ITS APPLICATIONS 681 (2023), 131-149
ISSN: 0024-3795

Factor impacto JCR: 1.0 (2023)
Categ. JCR: MATHEMATICS rank: 117 / 490 = 0.239 (2023) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 181 / 332 = 0.545 (2023) - Q3 - T2

Factor impacto CITESCORE: 2.2 - Algebra and Number Theory (Q1) - Geometry and Topology (Q1) - Discrete Mathematics and Combinatorics (Q2) - Numerical Analysis (Q2)

Factor impacto SCIMAGO: 0.837 - Algebra and Number Theory (Q1) - Discrete Mathematics and Combinatorics (Q1) - Geometry and Topology (Q2) - Numerical Analysis (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2024-11-22-12:10:08)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2024-01-31, modifiée le 2024-11-25


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)