Resumen: Modeling the dynamics of persistent infections presents several challenges. These diseases are characterized by long latency periods, which makes it compulsory to consider populations of varying sizes. In this paper, we discuss a model for the spreading of persistent infections in homogeneous, well-mixed, populations. We first derive the equations describing the system's dynamics and find the epidemic threshold by a stability analysis. Analytical solutions are then shown to agree with results obtained with numerical simulations. The present model, although simple, opens the path to more complex approaches to the spreading of persistent infections. Idioma: Inglés DOI: 10.1142/S0218127412501647 Año: 2012 Publicado en: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 22, 7 (2012), - ISSN: 0218-1274 Factor impacto JCR: 0.921 (2012) Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 20 / 57 = 0.351 (2012) - Q2 - T2 Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 48 / 93 = 0.516 (2012) - Q3 - T2 Tipo y forma: Artículo (PostPrint) Área (Departamento): Área Física Teórica (Dpto. Física Teórica) Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)