Synaptic dependence of dynamic regimes when coupling neural populations

Barrio, Roberto (Universidad de Zaragoza) ; Jover-Galtier, Jorge A. (Universidad de Zaragoza) ; Mayora-Cebollero, Ana (Universidad de Zaragoza) ; Mayora-Cebollero, Carmen (Universidad de Zaragoza) ; Serrano, Sergio (Universidad de Zaragoza)
Synaptic dependence of dynamic regimes when coupling neural populations
Resumen: In this article we focus on the study of the collective dynamics of neural networks. The analysis of two recent models of coupled “next-generation” neural mass models allows us to observe different global mean dynamics of large neural populations. These models describe the mean dynamics of all-to-all coupled networks of quadratic integrate-and-fire spiking neurons. In addition, one of these models considers the influence of the synaptic adaptation mechanism on the macroscopic dynamics. We show how both models are related through a parameter and we study the evolution of the dynamics when switching from one model to the other by varying that parameter. Interestingly, we have detected three main dynamical regimes in the coupled models: Rössler-type (funnel type), bursting-type, and spiking-like (oscillator-type) dynamics. This result opens the question of which regime is the most suitable for realistic simulations of large neural networks and shows the possibility of the emergence of chaotic collective dynamics when synaptic adaptation is very weak.
Idioma: Inglés
DOI: 10.1103/PhysRevE.109.014301
Año: 2024
Publicado en: Physical Review E 109, 1 (2024), 014301 [9 pp.]
ISSN: 2470-0045

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-02-06-14:56:43)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-02-05, last modified 2024-02-06


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)