Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay
Financiación H2020 / H2020 Funds
Resumen: We characterize the well-posedness of a third order in time equation with infinite delay in Ho ¨lder spaces, solely in terms of spectral properties concerning the data of the problem. Our analysis includes the case of the linearized Kuznetzov and Westerwelt equations. We show
in case of the Laplacian operator the new and surprising fact that for the standard memory kernel g(t) = t¿-1 e-at the third order problem is ill-posed whenever 0 < ¿ = 1 and a is inversely G(¿ ) proportional to the damping term of the given model.

Idioma: Inglés
DOI: 10.3934/cpaa.2018015
Año: 2018
Publicado en: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 17, 1 (2018), 243-265
ISSN: 1534-0392

Factor impacto JCR: 0.925 (2018)
Categ. JCR: MATHEMATICS rank: 107 / 313 = 0.342 (2018) - Q2 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 157 / 254 = 0.618 (2018) - Q3 - T2

Factor impacto SCIMAGO: 1.079 - Applied Mathematics (Q1) - Analysis (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/644202/EU/Geophysical Exploration using Advanced GAlerkin Methods/GEAGAM
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-02-05-16:08:45)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2024-02-05, last modified 2024-02-05


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)