Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay
Financiación H2020 / H2020 Funds
Resumen: We characterize the well-posedness of a third order in time equation with infinite delay in Ho ¨lder spaces, solely in terms of spectral properties concerning the data of the problem. Our analysis includes the case of the linearized Kuznetzov and Westerwelt equations. We show
in case of the Laplacian operator the new and surprising fact that for the standard memory kernel g(t) = t¿-1 e-at the third order problem is ill-posed whenever 0 < ¿ = 1 and a is inversely G(¿ ) proportional to the damping term of the given model.

Idioma: Inglés
DOI: 10.3934/cpaa.2018015
Año: 2018
Publicado en: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 17, 1 (2018), 243-265
ISSN: 1534-0392

Factor impacto JCR: 0.925 (2018)
Categ. JCR: MATHEMATICS rank: 107 / 313 = 0.342 (2018) - Q2 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 157 / 254 = 0.618 (2018) - Q3 - T2

Factor impacto SCIMAGO: 1.079 - Applied Mathematics (Q1) - Analysis (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/644202/EU/Geophysical Exploration using Advanced GAlerkin Methods/GEAGAM
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2024-02-05-16:08:45)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2024-02-05, modifiée le 2024-02-05


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)