Resumen: We prove that any knot or link in any 3-manifold can be nicely decomposed (split) by a filling Dehn sphere. This has interesting consequences in the study of branched coverings over knots and links. We give an algorithm for computing Johansson diagrams of filling Dehn surfaces out from coverings of 3-manifolds branched over knots or links. Idioma: Inglés DOI: 10.1142/S0218216516500188 Año: 2016 Publicado en: JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS 25, 4 (2016), 16500188 [11 pp.] ISSN: 0218-2165 Factor impacto JCR: 0.363 (2016) Categ. JCR: MATHEMATICS rank: 273 / 310 = 0.881 (2016) - Q4 - T3 Factor impacto SCIMAGO: 0.539 - Algebra and Number Theory (Q3)