Representing knots by filling Dehn spheres
Resumen: We prove that any knot or link in any 3-manifold can be nicely decomposed (split) by a filling Dehn sphere. This has interesting consequences in the study of branched coverings over knots and links. We give an algorithm for computing Johansson diagrams of filling Dehn surfaces out from coverings of 3-manifolds branched over knots or links.
Idioma: Inglés
DOI: 10.1142/S0218216516500188
Año: 2016
Publicado en: JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS 25, 4 (2016), 16500188 [11 pp.]
ISSN: 0218-2165

Factor impacto JCR: 0.363 (2016)
Categ. JCR: MATHEMATICS rank: 273 / 310 = 0.881 (2016) - Q4 - T3
Factor impacto SCIMAGO: 0.539 - Algebra and Number Theory (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2013-45710-C2
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2013-46337-C2
Tipo y forma: Article (PostPrint)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-02-07-14:35:29)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-02-07, last modified 2024-02-07


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)