Generalized analytical solution for compressive forces in adhesively-bonded-joint assembling
Resumen: Normal forces exerted by the adhesive to the substrate during the squeeze flow occurring in compaction of bonded joints are analyzed using theoretical, numerical and experimental techniques. An analytical solution, derived from the squeeze-flow theory of a viscoplastic material, is generalized to be valid for any initial shape of the adhesive cord. The rheology of the material is modeled according to the Herschel–Bulkley model and is fitted with experimental data available from the characterization of an epoxy-based adhesive. The analytical law is compared with a numerical model, where the two-phase problem for the squeeze-flow test is solved by finite-volume methods using a commercial CFD solver. The results obtained with these two approaches show excellent agreement with experimental forces obtained for a wedge-shaped specimen. The proposed methodology can therefore be useful for the optimization of the bond lines in assembling processes.
Idioma: Inglés
DOI: 10.1016/j.ijadhadh.2014.03.010
Año: 2014
Publicado en: INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES 52 (2014), 26-30
ISSN: 0143-7496

Factor impacto JCR: 1.773 (2014)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 108 / 257 = 0.42 (2014) - Q2 - T2
Categ. JCR: ENGINEERING, CHEMICAL rank: 53 / 135 = 0.393 (2014) - Q2 - T2

Tipo y forma: Article (PostPrint)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-02-09-14:30:23)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-02-09, last modified 2024-02-09


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)