Delta invariant of curves on rational surfaces I. An analytic approach
Resumen: We prove that if (C, 0) is a reduced curve germ on a rational surface singularity (X, 0) then its delta invariant can be recovered by a concrete expression associated with the embedded topological type of the pair C X. Furthermore, we also identify it with another (a priori) embedded analytic invariant, which is motivated by the theory of adjoint ideals. Finally, we connect our formulae with the local correction term at singular points of the global Riemann-Roch formula, valid for projective normal surfaces, introduced by Blache.
Idioma: Inglés
DOI: 10.1142/S0219199721500528
Año: 2022
Publicado en: Communications in Contemporary Mathematics 24, 7 (2022), 2150052 [23 pp.]
ISSN: 0219-1997

Factor impacto JCR: 1.6 (2022)
Categ. JCR: MATHEMATICS rank: 62 / 329 = 0.188 (2022) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 105 / 267 = 0.393 (2022) - Q2 - T2

Factor impacto CITESCORE: 2.9 - Mathematics (Q2)

Factor impacto SCIMAGO: 1.39 - Mathematics (miscellaneous) (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón
Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/Grupo Investigación de Algebra
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P
Financiación: info:eu-repo/grantAgreement/ES/MICIU/SEV-2017-0718
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Exportado de SIDERAL (2024-03-18-12:47:27)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-02-19, modifiée le 2024-03-19


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)