Combinatorial Aspects of the Character Variety of a Family of One-Relator Groups
Resumen: Let us consider the group G = hx, y | x m = y ni with m and n nonzero integers. In this paper, we study the character variety X(G) in SL(2, C) of the group G, obtaining by elementary methods an explicit primary decomposition of the ideal corresponding to X(G) in the coordinates X = tx, Y = ty and Z = txy. As an easy consequence, a formula for computing the number of irreducible components of X(G) as a function of m and n is given. Finally we
provide a combinatorial description of X(G) and we prove that in most cases it is possible to recover (m, n) from the combinatorial structure of X(G).

Idioma: Inglés
DOI: 10.1016/j.topol.2009.06.011
Año: 2009
Publicado en: TOPOLOGY AND ITS APPLICATIONS 156, 14 (2009), 2376-2389
ISSN: 0166-8641

Factor impacto JCR: 0.441 (2009)
Categ. JCR: MATHEMATICS rank: 191 / 255 = 0.749 (2009) - Q3 - T3
Categ. JCR: MATHEMATICS, APPLIED rank: 177 / 204 = 0.868 (2009) - Q4 - T3

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2007-67884-C04- 02
Financiación: info:eu-repo/grantAgreement/ES/MICINN MTM2007-67908- C02-01
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-03-01-14:36:44)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Didáctica de la Matemática



 Record created 2024-03-01, last modified 2024-03-01


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)