On the number of irreducible components of the representation variety of a family of one-relator groups
Resumen: Let us consider the group G = 〈x, y | xm = yn〉 with m and n nonzero integers. The set R(G) of representations of G over SL(2, ℂ) is a four-dimensional algebraic variety which is an invariant of G. In this paper the number of irreducible components of R(G) together with their dimensions are computed. We also study the set of metabelian representations of this family of groups. Finally, the behavior of the projection t : R(G) → X(G), where X(G) is the character variety of the group, and some combinatorial aspects of R(G) are investigated.
Idioma: Inglés
DOI: 10.1142/S0218196710005558
Año: 2010
Publicado en: INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION 20, 1 (2010), 77-87
ISSN: 0218-1967

Factor impacto JCR: 0.537 (2010)
Categ. JCR: MATHEMATICS rank: 162 / 278 = 0.583 (2010) - Q3 - T2
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2007-67884-C04- 02
Financiación: info:eu-repo/grantAgreement/ES/MICINN MTM2007-67908- C02-01
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)
Exportado de SIDERAL (2024-03-01-14:37:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > didactica_de_la_matematica



 Notice créée le 2024-03-01, modifiée le 2024-03-01


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)