Anisotropic self-assemblies of magnetic nanoparticles: experimental evidence of low-field deviation from the linear response theory and empirical model
Resumen: The heating ability upon application of an alternating magnetic field of a system of monodisperse and non-interacting superparamagnetic nanoparticles is described by Rosensweig''s model within the linear response limits. But in real applications, nanoparticle systems are rarely monodisperse or non-interacting, and predicting their heating ability is challenging, since it requires considering single-particle, inter-particle and collective effects. Herein we give experimental evidence of a collective effect that invalidates the linear response limits in self-assembled anisotropic arrangements. This effect allows tuning Neel relaxation times and, in turn, blocking temperatures, by just varying the alternating magnetic field amplitude. The analysis of the source magnetic and magnetothermal data leads to the development of an empirical model describing the modified Neel relaxation times in terms of characteristic parameters, whose physical interpretation is discussed. As a result, the dependency of Neel relaxation time on the magnetic field amplitude is assigned to a strong interaction energy contribution created locally by the ordered anisotropic assemblies. The reduction of this energy upon application of higher magnetic fields is related to the loss of preferred orientation of the magnetic moment of nanoparticles within assemblies. Remarkably, this energy contribution does not depend on particle volume distribution, so it does not contribute to widening of the energy barrier distribution of the assemblies, avoiding this detrimental effect of magnetic interactions, and contributing to an excellent heating ability. This work thus provides an analytical framework to analyze or predict the magnetic behavior and heating ability of superparamagnetic nanoparticles displaying collective effects.
Idioma: Inglés
DOI: 10.1039/c9nr05946f
Año: 2020
Publicado en: Nanoscale 12, 2 (2020), 572-583
ISSN: 2040-3364

Factor impacto JCR: 7.79 (2020)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 62 / 333 = 0.186 (2020) - Q1 - T1
Categ. JCR: PHYSICS, APPLIED rank: 23 / 160 = 0.144 (2020) - Q1 - T1
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 32 / 178 = 0.18 (2020) - Q1 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 29 / 106 = 0.274 (2020) - Q2 - T1

Factor impacto SCIMAGO: 2.037 - Nanoscience and Nanotechnology (Q1) - Materials Science (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E31-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2014-53961-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-86826-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2024-03-01-14:37:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-03-01, última modificación el 2024-03-01


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)