Stacking-configuration-preserved Graphene quantum dots electrochemically obtained from CVD Graphene
Financiación H2020 / H2020 Funds
Resumen: The layer stacking morphology in nanocarbons is paramount for achieving new properties and outperforming applications. Here, we demonstrate that graphene quantum dots (GQDs) retain crystallinity and a stacking structure from CVD graphene grown on Ni foam. Our results reveal that GQD subdomains comprise a few-layer graphene structure in the AB···AB and ABC···ABC stacking configuration. HR-TEM images along with a multiple-approach characterization (XRD, XPS, UV–vis, AFM, and ATR-IR) exhibit ∼3.0 to ∼8.0 nm crystalline GQDs with 2–6 graphene layers thick indicating a disk-shape structure. The UV–vis profiles show changes in color of the dispersion (from colorless to red) during and after the electrochemistry, suggesting a systematic electrooxidation of graphene into smaller, highly crystalline, and more complex sp2/sp3 structures. Importantly, a control experiment performed under the same conditions but with a graphitic rod exhibited large, polydisperse, and multilayer carbon structures. This work demonstrates a relatively easy electrochemical synthesis to obtain GQDs which retain the pristine and, in turn, distinctive structure of graphene grown on Ni foam.
Idioma: Inglés
DOI: 10.1021/acs.jpcc.3c06871
Año: 2024
Publicado en: Journal of physical chemistry. C. 128, 3 (2024), 1393-1403
ISSN: 1932-7447

Factor impacto JCR: 3.2 (2024)
Categ. JCR: CHEMISTRY, PHYSICAL rank: 95 / 185 = 0.514 (2024) - Q3 - T2
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 88 / 147 = 0.599 (2024) - Q3 - T2
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 237 / 460 = 0.515 (2024) - Q3 - T2

Factor impacto SCIMAGO: 0.914 - Physical and Theoretical Chemistry (Q1) - Electronic, Optical and Magnetic Materials (Q1) - Surfaces, Coatings and Films (Q1) - Energy (miscellaneous) (Q2) - Nanoscience and Nanotechnology (Q2)

Financiación: info:eu-repo/grantAgreement/EC/H2020/101007825/EU/ULtra ThIn MAgneto Thermal sEnsor-Ing/ULTIMATE-I
Financiación: info:eu-repo/grantAgreement/EC/H2020/872631 /EU/Memristive and multiferroic materials for emergent logic units in nanoelectronics/MELON
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2025-09-22-14:30:19)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Física de la Materia Condensada



 Registro creado el 2024-03-01, última modificación el 2025-09-24


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)