Tuneable hydrogel patterns in pillarless microfluidic devices
Financiación H2020 / H2020 Funds
Resumen: Organ-on-chip (OOC) technology has recently emerged as a powerful tool to mimic physiological or pathophysiological conditions through cell culture in microfluidic devices. One of its main goals is bypassing animal testing and encouraging more personalized medicine. The recent incorporation of hydrogels as 3D scaffolds into microfluidic devices has changed biomedical research since they provide a biomimetic extracellular matrix to recreate tissue architectures. However, this technology presents some drawbacks such as the necessity for physical structures as pillars to confine these hydrogels, as well as the difficulty in reaching different shapes and patterns to create convoluted gradients or more realistic biological structures. In addition, pillars can also interfere with the fluid flow, altering the local shear forces and, therefore, modifying the mechanical environment in the OOC model. In this work, we present a methodology based on a plasma surface treatment that allows building cell culture chambers with abutment-free patterns capable of producing precise shear stress distributions. Therefore, pillarless devices with arbitrary geometries are needed to obtain more versatile, reliable, and biomimetic experimental models. Through computational simulation studies, these shear stress changes are demonstrated in different designed and fabricated geometries. To prove the versatility of this new technique, a blood–brain barrier model has been recreated, achieving an uninterrupted endothelial barrier that emulates part of the neurovascular network of the brain. Finally, we developed a new technology that could avoid the limitations mentioned above, allowing the development of biomimetic OOC models with complex and adaptable geometries, with cell-to-cell contact if required, and where fluid flow and shear stress conditions could be controlled.
Idioma: Inglés
DOI: 10.1039/d3lc01082a
Año: 2024
Publicado en: Lab on a chip 24, 7 (2024), 2094-2106
ISSN: 1473-0197

Factor impacto JCR: 5.4 (2024)
Categ. JCR: BIOCHEMICAL RESEARCH METHODS rank: 8 / 86 = 0.093 (2024) - Q1 - T1
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 20 / 111 = 0.18 (2024) - Q1 - T1
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 11 / 79 = 0.139 (2024) - Q1 - T1
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 62 / 239 = 0.259 (2024) - Q2 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 51 / 147 = 0.347 (2024) - Q2 - T2

Factor impacto SCIMAGO: 1.201 - Biochemistry (Q1) - Bioengineering (Q1) - Biomedical Engineering (Q1) - Chemistry (miscellaneous) (Q1) - Nanoscience and Nanotechnology (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-126051OB-C41
Financiación: info:eu-repo/grantAgreement/ES/DGA/T62-230R
Financiación: info:eu-repo/grantAgreement/EC/H2020/829010/EU/Advanced and versatile PRInting platform for the next generation of active Microfluidic dEvices/PRIME
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RTI2018-097038-B-C21
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RTI2018-097038-B-C22
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PDC2022-133918-C21
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DIN2020-011544
Tipo y forma: Article (Published version)
Área (Departamento): Area Histología (Dpto. Anatom.Histolog.Humanas)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Exportado de SIDERAL (2025-09-22-14:32:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > mec._de_medios_continuos_y_teor._de_estructuras
articulos > articulos-por-area > histologia



 Notice créée le 2024-03-11, modifiée le 2025-09-23


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)