On Rogers-Shephard-type inequalities for the lattice point enumerator
Resumen: In this paper, we study various Rogers-Shephard-type inequalities for the lattice point enumerator Gn(·) on R n. In particular, for any non-empty convex bounded sets K, L, R n, we show that {equation presented} Additionally, a discrete counterpart to a classical result by Berwald for concave functions, from which other discrete Rogers-Shephard-type inequalities may be derived, is shown. Furthermore, we prove that these new discrete analogues for Gn(·) imply the corresponding results involving the Lebesgue measure. © 2022 World Scientific Publishing Company.
Idioma: Inglés
DOI: 10.1142/S0219199722500225
Año: 2023
Publicado en: Communications in Contemporary Mathematics 25, 8 (2023), 2250022 [30 pp.]
ISSN: 0219-1997

Factor impacto JCR: 1.2 (2023)
Categ. JCR: MATHEMATICS rank: 80 / 490 = 0.163 (2023) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 140 / 332 = 0.422 (2023) - Q2 - T2

Factor impacto CITESCORE: 2.9 - Mathematics (all) (Q1) - Applied Mathematics (Q2)

Factor impacto SCIMAGO: 1.264 - Mathematics (miscellaneous) (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN PID2019-105979GB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PGC2018-097046-B-I00
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-11:56:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2024-03-22, last modified 2024-11-25


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)