Jordan 3-graded Lie algebras with polynomial identities
Resumen: We study Jordan 3-graded Lie algebras satisfying 3-graded polynomial identities. Taking advantage of the Tits-Kantor-Koecher construction, we interpret the PI-condition in terms of their associated Jordan pairs, which allows us to formulate an analogue of Posner-Rowen Theorem for strongly prime PI Jordan 3-graded Lie algebras. Arbitrary PI Jordan 3-graded Lie algebras are also described by introducing the Kostrikin radical of the Lie algebras.
Idioma: Inglés
DOI: 10.1016/j.jpaa.2023.107543
Año: 2024
Publicado en: JOURNAL OF PURE AND APPLIED ALGEBRA 228, 4 (2024), 107543 [18 pp.]
ISSN: 0022-4049

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-23R
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2021-123461NB-C21
Tipo y forma: Article (Published version)
Área (Departamento): Área Algebra (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2024-03-22-09:47:39)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Álgebra



 Record created 2024-03-22, last modified 2024-03-22


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)