Resumen: We study Jordan 3-graded Lie algebras satisfying 3-graded polynomial identities. Taking advantage of the Tits-Kantor-Koecher construction, we interpret the PI-condition in terms of their associated Jordan pairs, which allows us to formulate an analogue of Posner-Rowen Theorem for strongly prime PI Jordan 3-graded Lie algebras. Arbitrary PI Jordan 3-graded Lie algebras are also described by introducing the Kostrikin radical of the Lie algebras. Idioma: Inglés DOI: 10.1016/j.jpaa.2023.107543 Año: 2024 Publicado en: JOURNAL OF PURE AND APPLIED ALGEBRA 228, 4 (2024), 107543 [18 pp.] ISSN: 0022-4049 Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-23R Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2021-123461NB-C21 Tipo y forma: Article (Published version) Área (Departamento): Área Algebra (Dpto. Matemáticas)