Evaluation of gelatin-based hydrogels for colon and pancreas studies using 3D in vitro cell culture
Resumen: Biomimetic 3D models emerged some decades ago to address 2D cell culture limitations in the field of replicating biological phenomena, structures or functions found in nature. The fabrication of hydrogels for cancer disease research enables the study of cell processes including growth, proliferation and migration and their 3D design is based on the encapsulation of tumoral cells within a tunable matrix. In this work, a platform of gelatin methacrylamide (GelMA)-based photocrosslinked scaffolds with embedded colorectal (HCT-116) or pancreatic (MIA PaCa-2) cancer cells is presented. Prior to cell culture, the mechanical characterization of hydrogels was assessed in terms of stiffness and swelling behavior. Modifications of the UV curing time enabled a fine tuning of the mechanical properties, which at the same time, showed susceptibility to the chemical composition and crosslinking mechanism. All scaffolds displayed excellent cytocompatibility with both tumoral cells while eliciting various cell responses depending on the microenvironment features. Individual and collective cell migration were observed for HCT-116 and MIA PaCa-2 cell lines, highlighting the ability of the colorectal cancer cells to cluster into aggregates of different sizes governed by the surrounding matrix. Additionally, metabolic activity results pointed out to the development of a more proliferative phenotype within stiffer networks. These findings confirm the suitability of the presented platform of GelMA-based hydrogels to conduct 3D cell culture experiments and explore biological processes associated with colorectal and pancreatic cancer.
Idioma: Inglés
DOI: 10.1039/d3tb02640j
Año: 2024
Publicado en: Journal of Materials Chemistry B 12 (2024), 3144-3160
ISSN: 2050-750X

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15-23R
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/CB06-01/00263
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-118485RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-141276OB-I00
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DI2017-09585
Tipo y forma: Article (Published version)
Área (Departamento): Area Histología (Dpto. Anatom.Histolog.Humanas)
Área (Departamento): Área Química Orgánica (Dpto. Química Orgánica)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2024-04-10-08:39:15)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Química Orgánica
Articles > Artículos por área > Histología



 Record created 2024-04-10, last modified 2024-04-10


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)