Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Universidad de Zaragoza Repository
Search
Submit
Personalize
Your alerts
Your baskets
Your searches
Help
EN
/
ES
Home
>
Articles
> Optimal trajectory planning combining model-based and data-driven hybrid approaches
Usage statistics
Plots
Optimal trajectory planning combining model-based and data-driven hybrid approaches
Ghnatios, Chady
;
Di Lorenzo, Daniele
;
Champaney, Victor
;
Ammar, Amine
;
Cueto, Elias
(Universidad de Zaragoza)
;
Chinesta, Francisco
Resumen:
Trajectory planning aims at computing an optimal trajectory through the minimization of a cost function. This paper considers four different scenarios: (i) the first concerns a given trajectory on which a cost function is minimized by a acting on the velocity along it; (ii) the second considers trajectories expressed parametrically, from which an optimal path and the velocity along it are computed; (iii), the case in which only the departure and arrival points of the trajectory are known, and the optimal path must be determined; and finally, (iv) the case involving uncertainty in the environment in which the trajectory operates. When the considered cost functions are expressed analytically, the application of Euler–Lagrange equations constitutes an appealing option. However, in many applications, complex cost functions are learned by using black-box machine learning techniques, for instance deep neural networks. In such cases, a neural approach of the trajectory planning becomes an appealing alternative. Different numerical experiments will serve to illustrate the potential of the proposed methodologies on some selected use cases.
Idioma:
Inglés
DOI:
10.1186/s40323-024-00266-2
Año:
2024
Publicado en:
Advanced modeling and simulation in engineering sciences
11, 1 (2024), 19 pp.
ISSN:
2213-7467
Financiación:
info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R
Financiación:
info:eu-repo/grantAgreement/EC/H2020/956401/EU/Cross-scale concurrent material-structure design using functionally-graded 3D-printed matematerials/XS-Meta
Financiación:
info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113463RB-C31/AEI/10.13039/501100011033
Financiación:
info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033
Tipo y forma:
Article (Published version)
Área (Departamento):
Área Mec.Med.Cont. y Teor.Est.
(
Dpto. Ingeniería Mecánica
)
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Exportado de SIDERAL (2024-05-22-10:17:30)
Permalink:
Copy
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Articles
Back to search
Record created 2024-05-22, last modified 2024-05-22
Versión publicada:
PDF
Rate this document:
Rate this document:
1
2
3
4
5
(Not yet reviewed)
Add to personal basket
Export as
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks