Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Atlantis Institut des Sciences Fictives
Recherche
Soumettre
Personnaliser
Vos alertes
Vos paniers
Vos recherches
Aide
EN
/
ES
Accueil
>
articulos
> Optimal trajectory planning combining model-based and data-driven hybrid approaches
Statistiques d'utilisation
Graphiques
Optimal trajectory planning combining model-based and data-driven hybrid approaches
Ghnatios, Chady
;
Di Lorenzo, Daniele
;
Champaney, Victor
;
Ammar, Amine
;
Cueto, Elias
(Universidad de Zaragoza)
;
Chinesta, Francisco
Resumen:
Trajectory planning aims at computing an optimal trajectory through the minimization of a cost function. This paper considers four different scenarios: (i) the first concerns a given trajectory on which a cost function is minimized by a acting on the velocity along it; (ii) the second considers trajectories expressed parametrically, from which an optimal path and the velocity along it are computed; (iii), the case in which only the departure and arrival points of the trajectory are known, and the optimal path must be determined; and finally, (iv) the case involving uncertainty in the environment in which the trajectory operates. When the considered cost functions are expressed analytically, the application of Euler–Lagrange equations constitutes an appealing option. However, in many applications, complex cost functions are learned by using black-box machine learning techniques, for instance deep neural networks. In such cases, a neural approach of the trajectory planning becomes an appealing alternative. Different numerical experiments will serve to illustrate the potential of the proposed methodologies on some selected use cases.
Idioma:
Inglés
DOI:
10.1186/s40323-024-00266-2
Año:
2024
Publicado en:
Advanced modeling and simulation in engineering sciences
11, 1 (2024), 19 pp.
ISSN:
2213-7467
Financiación:
info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R
Financiación:
info:eu-repo/grantAgreement/EC/H2020/956401/EU/Cross-scale concurrent material-structure design using functionally-graded 3D-printed matematerials/XS-Meta
Financiación:
info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113463RB-C31/AEI/10.13039/501100011033
Financiación:
info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033
Tipo y forma:
Article (Published version)
Área (Departamento):
Área Mec.Med.Cont. y Teor.Est.
(
Dpto. Ingeniería Mecánica
)
Exportado de SIDERAL (2024-05-22-10:17:30)
Permalink:
Copy
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
articulos
Retour à la recherche
Notice créée le 2024-05-22, modifiée le 2024-05-22
Versión publicada:
PDF
Évaluer ce document:
Rate this document:
1
2
3
4
5
(Pas encore évalué)
Ajouter au panier personnel
Exporter vers
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks