Exploring the geometry of the bifurcation sets in parameter space
Resumen: By studying a nonlinear model by inspecting a p-dimensional parameter space through (P-1)dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh–Rose and the FitzHugh–Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
Idioma: Inglés
DOI: 10.1038/s41598-024-61574-6
Año: 2024
Publicado en: Scientific reports (Nature Publishing Group) 14, 1 (2024), 10900 [14 pp.]
ISSN: 2045-2322

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/E24-23R
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-05-29-14:17:13)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2024-05-29, last modified 2024-05-29


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)