Exploring the geometry of the bifurcation sets in parameter space
Resumen: By studying a nonlinear model by inspecting a p-dimensional parameter space through (P-1)dimensional cuts, one can detect changes that are only determined by the geometry of the manifolds that make up the bifurcation set. We refer to these changes as geometric bifurcations. They can be understood within the framework of the theory of singularities for differentiable mappings and, in particular, of the Morse Theory. Working with a three-dimensional parameter space, geometric bifurcations are illustrated in two models of neuron activity: the Hindmarsh–Rose and the FitzHugh–Nagumo systems. Both are fast-slow systems with a small parameter that controls the time scale of a slow variable. Geometric bifurcations are observed on slices corresponding to fixed values of this distinguished small parameter, but they should be of interest to anyone studying bifurcation diagrams in the context of nonlinear phenomena.
Idioma: Inglés
DOI: 10.1038/s41598-024-61574-6
Año: 2024
Publicado en: Scientific reports (Nature Publishing Group) 14, 1 (2024), 10900 [14 pp.]
ISSN: 2045-2322

Factor impacto JCR: 3.9 (2024)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 25 / 135 = 0.185 (2024) - Q1 - T1
Factor impacto CITESCORE: 6.7 - Multidisciplinary (Q1)

Factor impacto SCIMAGO: 0.874 - Multidisciplinary (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/E24-23R
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2026-01-12-13:18:27)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2024-05-29, modifiée le 2026-01-12


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)