Predicting Perceived Gloss: Do Weak Labels Suffice?

Guerrero-Viu, Julia (Universidad de Zaragoza) ; Subias, J. Daniel (Universidad de Zaragoza) ; Serrano, Ana (Universidad de Zaragoza) ; Storrs, Katherine R. ; Fleming, Roland W. ; Masia, Belen (Universidad de Zaragoza) ; Gutierrez, Diego (Universidad de Zaragoza)
Predicting Perceived Gloss: Do Weak Labels Suffice?
Financiación H2020 / H2020 Funds
Resumen: Estimating perceptual attributes of materials directly from images is a challenging task due to their complex, not fully‐understood interactions with external factors, such as geometry and lighting. Supervised deep learning models have recently been shown to outperform traditional approaches, but rely on large datasets of human‐annotated images for accurate perception predictions. Obtaining reliable annotations is a costly endeavor, aggravated by the limited ability of these models to generalise to different aspects of appearance. In this work, we show how a much smaller set of human annotations (“strong labels”) can be effectively augmented with automatically derived “weak labels” in the context of learning a low‐dimensional image‐computable gloss metric. We evaluate three alternative weak labels for predicting human gloss perception from limited annotated data. Incorporating weak labels enhances our gloss prediction beyond the current state of the art. Moreover, it enables a substantial reduction in human annotation costs without sacrificing accuracy, whether working with rendered images or real photographs.
Idioma: Inglés
DOI: 10.1111/cgf.15037
Año: 2024
Publicado en: Computer Graphics Forum 43, 2 (2024), e15037 [13 pp.]
ISSN: 0167-7055

Financiación: info:eu-repo/grantAgreement/ES/DGA-CUS/702-2022
Financiación: info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101098225/EU/Seeing Stuff: Perceiving Materials and their Properties/STUFF
Financiación: info:eu-repo/grantAgreement/EC/H2020/956585/EU/Predictive Rendering In Manufacture and Engineering/PRIME
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU20-02340
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-141766OB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2024-06-05-10:50:38)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos



 Record created 2024-06-05, last modified 2024-06-05


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)