Predicting Perceived Gloss: Do Weak Labels Suffice?

Guerrero-Viu, Julia (Universidad de Zaragoza) ; Subias, J. Daniel (Universidad de Zaragoza) ; Serrano, Ana (Universidad de Zaragoza) ; Storrs, Katherine R. ; Fleming, Roland W. ; Masia, Belen (Universidad de Zaragoza) ; Gutierrez, Diego (Universidad de Zaragoza)
Predicting Perceived Gloss: Do Weak Labels Suffice?
Financiación H2020 / H2020 Funds
Resumen: Estimating perceptual attributes of materials directly from images is a challenging task due to their complex, not fully‐understood interactions with external factors, such as geometry and lighting. Supervised deep learning models have recently been shown to outperform traditional approaches, but rely on large datasets of human‐annotated images for accurate perception predictions. Obtaining reliable annotations is a costly endeavor, aggravated by the limited ability of these models to generalise to different aspects of appearance. In this work, we show how a much smaller set of human annotations (“strong labels”) can be effectively augmented with automatically derived “weak labels” in the context of learning a low‐dimensional image‐computable gloss metric. We evaluate three alternative weak labels for predicting human gloss perception from limited annotated data. Incorporating weak labels enhances our gloss prediction beyond the current state of the art. Moreover, it enables a substantial reduction in human annotation costs without sacrificing accuracy, whether working with rendered images or real photographs.
Idioma: Inglés
DOI: 10.1111/cgf.15037
Año: 2024
Publicado en: Computer Graphics Forum 43, 2 (2024), e15037 [13 pp.]
ISSN: 0167-7055

Factor impacto JCR: 2.9 (2024)
Categ. JCR: COMPUTER SCIENCE, SOFTWARE ENGINEERING rank: 48 / 128 = 0.375 (2024) - Q2 - T2
Factor impacto SCIMAGO: 0.788 - Computer Graphics and Computer-Aided Design (Q1) - Computer Networks and Communications (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA-CUS/702-2022
Financiación: info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101098225/EU/Seeing Stuff: Perceiving Materials and their Properties/STUFF
Financiación: info:eu-repo/grantAgreement/EC/H2020/956585/EU/Predictive Rendering In Manufacture and Engineering/PRIME
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU20-02340
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-141766OB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2025-09-22-14:34:13)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > lenguajes_y_sistemas_informaticos



 Notice créée le 2024-06-05, modifiée le 2025-09-23


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)