Performance evaluation of QT-RR adaptation time lag estimation in exercise stress testing

Pérez, C. (Universidad de Zaragoza) ; Pueyo, E. (Universidad de Zaragoza) ; Martínez, J. P. (Universidad de Zaragoza) ; Viik, J. ; Sornmo, L. ; Laguna, P. (Universidad de Zaragoza)
Performance evaluation of QT-RR adaptation time lag estimation in exercise stress testing
Resumen: Background: Slower adaptation of the QT interval to sudden changes in heart rate has been identified as a risk marker of ventricular arrhythmia. The gradual changes observed in exercise stress testing facilitates the estimation of the QT-RR adaptation time lag. Methods: The time lag estimation is based on the delay between the observed QT intervals and the QT intervals derived from the observed RR intervals using a memoryless transformation. Assuming that the two types of QT interval are corrupted with either Gaussian or Laplacian noise, the respective maximum likelihood time lag estimators are derived. Estimation performance is evaluated using an ECG simulator which models change in RR and QT intervals with a known time lag, muscle noise level, respiratory rate, and more. The accuracy of T-wave end delineation and the influence of the learning window positioning for model parameter estimation are also investigated. Results: Using simulated datasets, the results show that the proposed approach to estimation can be applied to any changes in heart rate trend as long as the frequency content of the trend is below a certain frequency. Moreover, using a proper position of the learning window for exercise so that data compensation reduces the effect of nonstationarity, a lower mean estimation error results for a wide range of time lags. Using a clinical dataset, the Laplacian-based estimator shows a better discrimination between patients grouped according to the risk of suffering from coronary artery disease. Conclusions : Using simulated ECGs, the performance evaluation of the proposed method shows that the estimated time lag agrees well with the true time lag.
Idioma: Inglés
DOI: 10.1109/TBME.2024.3410008
Año: 2024
Publicado en: IEEE Transactions on Biomedical Engineering 71, 11 (2024), 3170-3180
ISSN: 0018-9294

Financiación: info:eu-repo/grantAgreement/ES/DGA/LMP94_21
Financiación: info:eu-repo/grantAgreement/ES/DGA/T39-23R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-140556OB-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130459B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-12-20-12:05:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Teoría de la Señal y Comunicaciones



 Record created 2024-07-04, last modified 2024-12-20


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)