Structure-preserving formulations for data-driven analysis of coupled multi-physics systems
Resumen: We develop a novel methodology for data-driven simulation of coupled multi-physics systems. The result of the method is a learned numerical integrator of the coupled system dynamics. In order to preserve the fundamental physics of the coupled systems, and thus preserve the geometrical properties of the governing equations—even if they may be completely unknown—we impose a port-metriplectic structure on the system evolution, i.e., a combination of a symplectic evolution for the system energy with a gradient flow for the entropy of each system, which can be exchanged through predefined ports. The resulting method guarantees by construction the satisfaction of the laws of thermodynamics for open systems, leading to accurate predictions of the future states of their dynamics. Examples are given for systems of varying complexity, based on synthetic as well as experimental data.
Idioma: Inglés
DOI: 10.1007/s00466-024-02508-x
Año: 2025
Publicado en: COMPUTATIONAL MECHANICS 75 (2025), 357–368
ISSN: 0178-7675

Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113463RB-C31/AEI/10.13039/501100011033
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-02-10-08:31:29)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras



 Record created 2024-07-04, last modified 2025-02-10


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)