Machine learning for automatic rule classification of agricultural regulations: A case study in Spain
Resumen: Currently, pest management practices require modern equipment and the use of complex information, such as regulations and guidelines. The complexity of regulations is the root cause of the emergence of automated solutions for compliance assessment by translating regulations into sets of machine-processable rules that can be run by specialized modules of farm management information systems (FMIS). However, the manual translation of rules is prohibitively costly, and therefore, this translation should be carried out with the support of artificial intelligence techniques. In this paper, we use the official Spanish phytosanitary products registry to empirically evaluate the performance of four popular machine learning algorithms in the task of correctly classifying pesticide regulations as prohibitions or obligations. Moreover, we also evaluate how to improve the performance of the algorithms in the preprocessing of the texts with natural language processing techniques. Finally, due to the specific characteristics of the texts found in pesticide regulations, resampling techniques are also evaluated. Experiments show that the combination of the machine learning algorithm Logic regression, the natural language technique part-of-speech tagging and the resampling technique Tomek links is the best performing approach, with an F1 score of 68.8%, a precision of 84.46% and a recall of 60%. The experimental results are promising, and they show that this approach can be applied to develop a computer-aided tool for transforming textual pesticide regulations into machine-processable rules. To the best of our knowledge, this is the first study that evaluates the use of artificial intelligence methods for the automatic translation of agricultural regulations into machine-processable representations.
Idioma: Inglés
DOI: 10.1016/j.compag.2018.05.007
Año: 2018
Publicado en: Computers and Electronics in Agriculture 150 (2018), 343-352
ISSN: 0168-1699

Factor impacto JCR: 3.171 (2018)
Categ. JCR: AGRICULTURE, MULTIDISCIPLINARY rank: 5 / 56 = 0.089 (2018) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 31 / 106 = 0.292 (2018) - Q2 - T1

Factor impacto SCIMAGO: 0.95 - Agronomy and Crop Science (Q1) - Animal Science and Zoology (Q1) - Horticulture (Q1) - Forestry (Q1) - Computer Science Applications (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/RTC-2016-4790-2
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TIN2017-88002-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-07-11-08:36:50)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2024-07-11, última modificación el 2024-07-11


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)