Development of a Machine-Learning Model for Diagnosis of Pancreatic Cancer from Serum Samples Analyzed by Thermal Liquid Biopsy
Resumen: Pancreatic ductal adenocarcinoma (PDAC) poses a considerable diagnostic and therapeutic challenge due to the lack of specific biomarkers and late diagnosis. Early detection is crucial for improving prognosis, but current techniques are insufficient. An innovative approach based on differential scanning calorimetry (DSC) of blood serum samples, thermal liquid biopsy (TLB), combined with machine‐learning (ML) analysis, may offer a more efficient method for diagnosing PDAC. Serum samples from a cohort of 212 PDAC patients and 184 healthy controls are studied. DSC thermograms are analyzed using ML models. The generated models are built applying algorithms based on penalized regression, resampling, categorization, cross validation, and variable selection. The ML‐based model demonstrates outstanding ability to discriminate between PDAC patients and control subjects, with a sensitivity of 90% and an area under the ROC receiver operating characteristic curve of 0.83 in the training and test groups. Application of the model to an independent validation cohort of 113 PDAC patients confirms its robustness and utility as a diagnosis tool. The application of ML to serum TLB data emerges as a promising  methodology for early diagnosis, representing a significant advance for detecting and managing PDAC, envisaging a minimally invasive and more efficient methodology for identifying biomarkers.
Idioma: Inglés
DOI: 10.1002/aisy.202400308
Año: 2024
Publicado en: Advanced Intelligent Systems (2024), 2400308 [10 pp.]
ISSN: 2640-4567

Financiación: info:eu-repo/grantAgreement/EUR/COST-Action/CA21116-TRANSPAN
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Area Medicina (Dpto. Medicina, Psiqu. y Derm.)
Área (Departamento): Área Bioquímica y Biolog.Mole. (Dpto. Bioq.Biolog.Mol. Celular)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-14-10:18:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-11-14, última modificación el 2024-11-14


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)